Improved Quantum Approximate Optimization Algorithm for Low‐Density Parity‐Check Channel Decoding

Author:

Zeng Han1,Meng Fanxu2,Luan Tian3,Yu Xutao14,Zhang Zaichen14ORCID

Affiliation:

1. Frontiers Science Center for Mobile Information Communication and Security Southeast University Nanjing 210096 P. R. China

2. College of Artificial Intelligence Nanjing Tech University Nanjing 211816 P. R. China

3. Yangtze Delta Region Industrial Innovation Center of Quantum and Information Technology Suzhou 215100 P. R. China

4. Purple Mountain Laboratory Nanjing 211111 P. R. China

Abstract

AbstractQuantum computing shows promise for 6G networks due to its parallel computing capabilities. In the context of the Noisy Intermediate‐Scale Quantum era, the introduction of hybrid quantum‐classical algorithms like Quantum Approximate Optimization Algorithm (QAOA) offer powerful solutions to many combinatorial optimization problems in 6G. This paper focuses on Low‐Density Parity‐Check (LDPC) channel decoding and proposes an improved QAOA algorithm assisted by the learning‐to‐learn strategy. We also investigate the parameter concentration phenomenon in QAOA‐based LDPC decoding to assess the rationality. To evaluate effectiveness, a comprehensive numerical expression for the energy expectation of single‐layer QAOA and propose indicators for transfer performance evaluation is provided. Based on simulation results, the similarity in parameter distribution across specific LDPC configurations is investigated. This similarity facilitates the transfer of training outcomes from smaller to larger‐scale problems for optimization initialization, thereby avoiding the need for retraining. This approach offers insights and potential solutions for rapid, large‐scale channel decoding in 6G networks, despite the current limitations of quantum hardware.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3