Fast Quantum State Discrimination with Nonlinear Positive Trace‐Preserving Channels

Author:

Geller Michael R.1ORCID

Affiliation:

1. Center for Simulational Physics University of Georgia Athens GA 30602 USA

Abstract

AbstractModels of nonlinear quantum computation based on deterministic positive trace‐preserving (PTP) channels and evolution equations are investigated. The models are defined in any finite Hilbert space, but the main results are for dimension . For every normalizable linear or nonlinear positive map ϕ on bounded linear operators X, there is an associated normalized PTP channel . Normalized PTP channels include unitary mean field theories, such as the Gross–Pitaevskii equation for interacting bosons, as well as models of linear and nonlinear dissipation. They classify into four types, yielding three distinct forms of nonlinearity whose computational power are explored. In the qubit case, these channels support Bloch ball torsion and other distortions studied previously, where it has been shown that such nonlinearity can be used to increase the separation between a pair of close qubit states, suggesting an exponential speedup for state discrimination. Building on this idea, the authors argue that this operation can be made robust to noise by using dissipation to induce a bifurcation to a novel phase where a pair of attracting fixed points create an intrinsically fault‐tolerant nonlinear state discriminator.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3