Affiliation:
1. QinetiQ, Advanced Services & Products Cody Technology Park Farnborough Hampshire GU14 0LX UK
2. College of Art and Science Khalifa University Abu Dhabi P.O. Box 127788 UAE
3. Loughborough University Physics, Epinal Way Loughborough Leicestershire LE11 3TU UK
Abstract
AbstractAn electron is a quantum particle and behaves as both a particle and a probability wave. On account of this it can be controlled in a similar way to a photon and electronic devices can be designed in analogy to those based on light when there is minimal excitation of the underlying Fermi sea. Here, splitting of the electron wavefunction is explored for systems supporting Dirac type physics, with a focus on graphene but being equally applicable to electronic states in topological insulators, liquid helium, and other systems described relativistically. Electron beam‐splitters and superfocusers are analysed along with propagation through nanoribbons, demonstrating that the waveform, system geometry, and energies all need to balance to maximise the probability density and hence lifetime of the flying electron. These findings form the basis for novel quantum electron optics.
Funder
Khalifa University of Science, Technology and Research
Subject
Electrical and Electronic Engineering,Computational Theory and Mathematics,Condensed Matter Physics,Mathematical Physics,Nuclear and High Energy Physics,Electronic, Optical and Magnetic Materials,Statistical and Nonlinear Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献