Clustering by Contour Coreset and Variational Quantum Eigensolver

Author:

Yung Canaan1ORCID,Usman Muhammad23ORCID

Affiliation:

1. School of Computing and Information Systems The University of Melbourne Parkville Victoria 3010 Australia

2. School of Physics The University of Melbourne Parkville Victoria 3010 Australia

3. Data61, CSIRO Clayton Victoria 3168 Australia

Abstract

AbstractRecent work has proposed solving the k‐means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k‐means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms, and there is no quantum‐tailored coreset technique designed to boost the accuracy of quantum algorithms. This study proposes solving the k‐means clustering problem with the variational quantum eigensolver (VQE) and a customized coreset method, the Contour coreset, which is formulated with a specific focus on quantum algorithms. Extensive simulations with synthetic and real‐life data demonstrated that the VQE+Contour Coreset approach outperforms existing QAOA+Coreset k‐means clustering approaches with higher accuracy and lower standard deviation. This research demonstrates that quantum‐tailored coreset techniques can remarkably boost the performance of quantum algorithms compared to generic off‐the‐shelf coreset techniques.

Publisher

Wiley

Reference21 articles.

1. A. W.Harrow arXiv:2004.000262020.

2. Coreset Clustering on Small Quantum Computers

3. F.Qu S. M.Erfani M.Usman arXiv:2206.078522022.

4. O.Bachem M.Lucic A.Krause inProc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. Association for Computing Machinery New York NY USA 2018 pp.1119–1127.

5. O.Bachem M.Lucic A.Krause arXiv:1703.064762017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3