Activin A Is Essential for Neurogenesis Following Neurodegeneration

Author:

Abdipranoto-Cowley Andrea12,Park Jin Sung1,Croucher David3,Daniel James12,Henshall Susan23,Galbraith Sally4,Mervin Kyle1,Vissel Bryce12

Affiliation:

1. Neuroscience Program, The Garvan Institute of Medical Research, Sydney, Australia

2. Faculty of Medicine, University of New South Wales, Sydney, Australia

3. Cancer Program, The Garvan Institute of Medical Research, Sydney, Australia

4. School of Mathematics and Statistics, University of New South Wales, Sydney, Australia

Abstract

Abstract It has long been proposed that excitotoxicity contributes to nerve cell death in neurodegenerative diseases. Activin A, a member of the transforming growth factor-β superfamily, is expressed by neurons following excitotoxicity. We show for the first time that this activin A expression is essential for neurogenesis to proceed following neurodegeneration. We found that intraventricular infusion of activin A increased the number of newborn neurons in the dentate gyrus, CA3, and CA1 layers of the normal adult hippocampus and also, following lipopolysaccharide administration, had a potent inhibitory effect on gliosis in vivo and on microglial proliferation in vivo and in vitro. Consistent with the role of activin A in regulating central nervous system inflammation and neurogenesis, intraventricular infusion of follistatin, an activin A antagonist, profoundly impaired neurogenesis and increased the number of microglia and reactive astrocytes following onset of kainic acid-induced neurodegeneration. These results show that inhibiting endogenous activin A is permissive for a potent underlying inflammatory response to neurodegeneration. We demonstrate that the anti-inflammatory actions of activin A account for its neurogenic effects following neurodegeneration because co-administration of nonsteroidal anti-inflammatory drugs reversed follistatin's inhibitory effects on neurogenesis in vivo. Our work indicates that activin A, perhaps working in conjunction with other transforming growth factor-β superfamily molecules, is essential for neurogenesis in the adult central nervous system following excitotoxic neurodegeneration and suggests that neurons can regulate regeneration by suppressing the inflammatory response, a finding with implications for understanding and treating acute and chronic neurodegenerative diseases. Disclosure of potential conflicts of interest is found at the end of this article.

Funder

NHMRC Australia Grant

NSW State Government's BioFirst Award and Spinal Cord and Related Neurological Conditions Grant

Baxter Charitable Foundation

Henry H Roth Charitable Foundation

Australian Postgraduate Award

Alma Hazel Eddy Trust

Ramaciotti Foundation

Ronald Geoffrey Arnott Foundation and Perpetual Trusts

The Brain Foundation Research Grant

K & A Collins Cancer Grant

Adult Stem Cell Research Grant

Lyndsay and Heather Payne Medical Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3