On the varied impact of the Storegga tsunami in northwest Scotland

Author:

Woodroffe Sarah A.1ORCID,Hill Jon2ORCID,Bustamante‐Fernandez Emmanuel13,Lloyd Jerry M.1,Luff Jake1,Richards Sarah1,Shennan Ian1

Affiliation:

1. Department of Geography Durham University Durham UK

2. Department of Environment and Geography University of York York UK

3. Department of Earth and Climate Sciences Tufts University Medford MA USA

Abstract

ABSTRACTIn this paper we evaluate new data and those from previous studies in northwest Scotland and perform a modelling study to test the hypothesis that the Storegga tsunami (submarine slope failure off the continental shelf of Central Norway dated to 8120–8175 bp) impacted this region. The model used is a 2D non‐linear, non‐conservative, Shallow Water Equation solver incorporating inundation and realistic glacial isostatic adjustment‐corrected palaeobathymetry, with horizontal resolution down to 30 m at sites of interest. The 15 coastal study sites analysed range from south of the Isle of Skye to Assynt. We predict run‐up between 2.7 and 9.4 m above contemporaneous mean tide level across the region, with the highest on the west coast of the Outer Hebrides, the east coast of Skye and at the head of long sea lochs east of Skye. We re‐evaluate evidence from previously studied open coastal marshes, isolation basins and barrier locations for the tsunami and suggest that in many locations the Storegga tsunami is the most likely cause of erosion, deposition and changes in microfossil assemblages in the early Holocene. The predictions of wave height and inundation produced by the tsunami modelling fit well with the range of available field evidence in the region. We predict significant wave heights at least as far south as Mull on the west coast.

Publisher

Wiley

Subject

Paleontology,Earth and Planetary Sciences (miscellaneous),Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3