Broadscale and fine‐scale variables predict the occurrence of a stream‐breading bufonid: Habitat use by the Arizona toad (Anaxyrus microscaphus)

Author:

Montgomery Brett J.1ORCID,Bateman Heather L.1ORCID,Albuquerque Fábio S. D.1

Affiliation:

1. College of Integrative Sciences and Arts Arizona State University Mesa Arizona United States

Abstract

AbstractArizona toad (Anaxyrus microscaphus) is a stream‐breeding bufonid of conservation concern in Arizona, New Mexico, Utah, and Nevada. We determined the occupancy and habitat use of the Arizona toad throughout its range. We surveyed 500‐m reaches along perennial and intermittent streams during the summers of 2021 and 2022 (n = 232) in Arizona. We recorded the presence of all toad life stages, focusing on larval stages. We related toad occupancy to broadscale environmental variables, including measures of bioclimate, habitat heterogeneity, solar radiation, and topography. We collected fine‐scale variables to summarize vegetation cover and substrate within plots (n = 53). We applied multiple occupancy models. Single‐species model results found low toad occupancy with high detection. Two principal component analyses (PCA) were run on broadscale and fine‐scale variables to reduce the number of variables included in the models. Toad occupancy was best predicted by top models with bioclimatic components; occupancy decreases with extremely hot temperatures and less precipitation. A logistic regression related toad presence to fine‐scale components with top models describing riparian complexity and algae. Arizona toads were selected for areas with foliar canopy cover, shallow water, algae cover, and pebble substrates. Arizona toad is an uncommon species and maintaining riparian forests of complex habitats with shallow and side‐channel flow will be important for toad conservation. Implications of less water cause riparian habitat to dry, which ultimately harms aquatic life.

Funder

Arizona Game and Fish Department

Publisher

Wiley

Reference68 articles.

1. A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling;Adams M. J.;Scientific Data,2013

2. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling

3. Complex riparian habitats predict reptile and amphibian diversity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3