Comprehensive analysis of synthetic learning applied to neonatal brain MRI segmentation

Author:

Valabregue R.1ORCID,Girka F.1,Pron A.2,Rousseau F.3,Auzias G.2ORCID

Affiliation:

1. CENIR, Institut du Cerveau (ICM)—Paris Brain Institute, Inserm U 1127, CNRS UMR 7225, Sorbonne Université Paris France

2. Aix‐Marseille Université, CNRS, Institut de Neurosciences de la Timone, UMR 7289 Marseille France

3. IMT Atlantique, LaTIM INSERM U1101 Brest France

Abstract

AbstractBrain segmentation from neonatal MRI images is a very challenging task due to large changes in the shape of cerebral structures and variations in signal intensities reflecting the gestational process. In this context, there is a clear need for segmentation techniques that are robust to variations in image contrast and to the spatial configuration of anatomical structures. In this work, we evaluate the potential of synthetic learning, a contrast‐independent model trained using synthetic images generated from the ground truth labels of very few subjects. We base our experiments on the dataset released by the developmental Human Connectome Project, for which high‐quality images are available for more than 700 babies aged between 26 and 45 weeks postconception. First, we confirm the impressive performance of a standard UNet trained on a few volumes, but also confirm that such models learn intensity‐related features specific to the training domain. We then confirm the robustness of the synthetic learning approach to variations in image contrast. However, we observe a clear influence of the age of the baby on the predictions. We improve the performance of this model by enriching the synthetic training set with realistic motion artifacts and over‐segmentation of the white matter. Based on extensive visual assessment, we argue that the better performance of the model trained on real T2w data may be due to systematic errors in the ground truth. We propose an original experiment allowing us to show that learning from real data will reproduce any systematic bias affecting the training set, while synthetic models can avoid this limitation. Overall, our experiments confirm that synthetic learning is an effective solution for segmenting neonatal brain MRI. Our adapted synthetic learning approach combines key features that will be instrumental for large multisite studies and clinical applications.

Funder

Grand Équipement National De Calcul Intensif

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

Wiley

Reference41 articles.

1. Toward the automatic quantification of in utero brain development in 3D structural MRI: A review

2. Billot B. Greve D. Van Leemput K. Fischl B. Iglesias J. E. &Dalca A. V.(2020).A learning strategy for contrast‐agnostic MRI segmentation.arXiv preprint arXiv:2003.01995.

3. SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining

4. Billot B. Magdamo C. Arnold S. E. Das S. &Iglesias J.(2022).Robust machine learning segmentation for large‐scale analysis of heterogeneous clinical brain MRI datasets.arXiv preprint arXiv:2209.02032.

5. Cardoso M. J. Li W. Brown R. Ma N. Kerfoot E. Wang Y. Murrey B. Myronenko A. Zhao C. Yang D. et al. (2022).Monai: An open‐source framework for deep learning in healthcare.arXiv preprint arXiv:2211.02701.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3