Synthesis, curing, and degradation kinetics of polyurethanes based on poly(ethylene glycol), isosorbide, and pentamethylene diisocyanate

Author:

Araújo Amanda Meneses1,Barreto José Vinícius Melo1,Nicácio Pedro Henrique Medeiros2,de Albuquerque Ananda Karoline Camelo2,dos Santos Silva Ingridy Dayane2ORCID,Ries Andreas3,Wellen Renate Maria Ramos12ORCID

Affiliation:

1. Materials Engineering Department Federal University of Paraíba João Pessoa Brazil

2. Academic Unit of Materials Engineering Federal University of Campina Grande Campina Grande Brazil

3. Multidisciplinary Center for Technological Investigations, National University of Asunción San Lorenzo University Campus San Lorenzo Paraguay

Abstract

AbstractPolyurethane (PU) synthesis based on poly(ethylene glycol) (PEG) with isosorbide (ISO) and pentamethylene diisocyanate (PDI), named (ISOPUs) was carried out targeting PUs from renewable sources. The cross‐linked ISOPUs were produced and the details of the curing kinetics were determined via Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). DSC scans displayed exotherms between 100 and 200°C, related to cross‐linking. ISO addition accelerated the curing and the maximum curing rate (Cmax), with 91°C and 0.2964 min−1 for the compound with 70% ISO. FTIR spectra confirmed the interaction between OH (ISO/PEG) and NCO (PDI) groups, with total NCO consumption (band at 2267 cm−1). Through the thermogravimetric analyses (TGA), the PU/70% ISO presented weight loss at 146°C due to the degradation of ISO. ISOPUs displayed a decreased activation energy (Ea) during curing over a range of 100 to 42 kJ/mol for 0 < α < 5%, as demonstrated using the Friedman model, and higher thermal stability as evidenced through TG analyses. Curing and degradation kinetics were modeled using Friedman (FR), Kissinger‐Akahira‐Sunose (KAS), and Ozawa‐Flynn‐Wall (OFW). Overall, ISO accelerated the curing rate and increased the degradation Ea, suggesting high thermal stability for PUs with intermediate ISO contents, that is, 30%–50%.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Apoio à Pesquisa do Estado da Paraíba

Publisher

Wiley

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3