Impacts of Extratropical Cyclone Fiona on a sensitive coastal lagoon ecosystem

Author:

Bonnington Abigail C.1ORCID,Jamieson Rob C.1ORCID,Smith Kathryn A.1ORCID,Oliver Allie1,Johnston Lindsay H.1ORCID,LeRoux Nicole K.1ORCID,Somers Lauren D.1ORCID,Kurylyk Barret L.1ORCID

Affiliation:

1. Department of Civil and Resource Engineering and Centre for Water Resources Studies Dalhousie University Halifax Nova Scotia Canada

Abstract

AbstractOceanic storms can strongly disturb the physical and biogeochemical conditions of transitional coastal waters. Impacts of extreme oceanic storms on coastal ecosystems have received limited attention worldwide, with no studies at higher latitudes (> 45°) where tropical cyclones have usually abated. This study investigates the combined impacts from marine and atmospheric forcing on a coastal lagoon in Prince Edward Island, Canada, during and after Extratropical Cyclone Fiona in September 2022. Physical (water levels and temperature) and biogeochemical (dissolved oxygen [DO], electrical conductivity, pH, nitrate–nitrogen concentrations, total suspended solids [TSS]) datasets from the lagoon and the watershed's tributaries, groundwater springs, and piezometers were used to assess ecosystem disturbance and recovery timelines following the storm. Fiona resulted in a 1.6 m storm surge into the lagoon that elevated water temperatures by up to 6°C, disturbed the density‐dependent stratification of salinity and temperature, and reduced the diel amplitude of DO, indicating a reduction in plant respiration due to ecosystem disturbance. The freshwater tributaries revealed sharp changes in flow (30‐fold increase), nitrate–nitrogen (NO3‐N) concentrations and loading (70‐fold increase), and TSS loading (40‐fold increase) to the lagoon during and immediately following the storm. The lagoon rapidly recovered (hours) from the hydraulic disturbance of the storm surge, but elevated nutrient levels persisted for months. The intensity and frequency of extratropical cyclones is projected to increase in the Northwest Atlantic, making field‐based studies of cyclone impacts on coastal waters critical for understanding future coastal ecosystem disturbance and recovery periods relative to the timing of future storms.

Funder

Canada First Research Excellence Fund

Environment and Climate Change Canada

Fisheries and Oceans Canada

Publisher

Wiley

Subject

Aquatic Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3