The effects of dissolved organic matter supplements on the metabolism of corals under heat stress

Author:

Lange Kiara12ORCID,Reynaud Stéphanie1ORCID,de Goeij Jasper M.3ORCID,Ferrier‐Pagès Christine1ORCID

Affiliation:

1. Coral Ecophysiology team Centre Scientifique de Monaco Monaco

2. Collège Doctoral Sorbonne Université Paris France

3. Department of Freshwater and Marine Ecology Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam The Netherlands

Abstract

AbstractOctocorals represent a major alternative group in the benthic community of reefs that have diverged from hexacoral dominance. Despite their phototrophic symbionts, supplementing their diet with heterotrophic sources may promote their growth, particularly when compared to hexacorals in bleaching conditions. However, limited comprehensive data exists on octocorals' trophic ecology, especially regarding their ability to feed on dissolved organic matter (DOM), which comprises the largest pool of organic matter in reefs. This study aims to investigate the ability of two octocorals (Sarcophyton glaucum and Lobophytum sp.) to feed on DOM and compare this ability to that of hexacorals, such as Stylophora pistillata and Turbinaria reniformis. The study measured the net fluxes of DOM under varying DOM concentrations and under heat stress. The results demonstrate that all coral species were net producers of DOM at ambient concentrations, but became net consumers once seawater was supplemented with DOM. Furthermore, our study highlights a relationship between coral physiological responses to heat stress and DOM uptake. Corals that increased (S. pistillata) or maintained (S. glaucum and Lobophytum sp.) their DOM uptake rates at high temperature were the most resilient to heat stress. In contrast, T. reniformis exhibited lower DOM uptake rates at high temperatures, which was associated with significant bleaching. Understanding the ability of corals to feed on DOM may, therefore, provide insight into the resilience of species under ocean warming conditions.

Funder

Centre Scientifique de Monaco

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3