Glaciers, snow, and rain: Water source influences invertebrate community structure and secondary production across a hydrologically diverse subarctic landscape

Author:

Dunkle Matthew R.1ORCID,Bellmore J. Ryan2ORCID,Fellman Jason B.3ORCID,Caudill Christopher C.1ORCID

Affiliation:

1. Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho USA

2. Pacific Northwest Research Station, USDA Forest Service Juneau Alaska USA

3. Alaska Coastal Rainforest Center University of Alaska Southeast Juneau Alaska USA

Abstract

AbstractThe melting cryosphere adds heterogeneity to the abiotic and biotic characteristics of many high latitude and montane rivers. However, climate change threatens the cryosphere's persistence in many regions. While existing research has explored the impacts of cryospheric loss on the diversity and structure of freshwater communities, implications for functional traits of communities, such as production of aquatic invertebrates, remain unresolved. Here, we quantified aquatic invertebrate community structure and secondary production in southeast Alaska (USA) streams that represent a meltwater to non‐meltwater gradient, including streams fed primarily by: (1) glacier‐melt, (2) snowmelt, (3) rainfall, and (4) a combination of these sources. We found alpha diversity was highest in the snow‐fed stream and lowest in the glacier‐fed stream. Annual secondary production was also lowest in the glacier‐fed stream (0.56 g ash‐free dry mass m−2), but 2–5 times higher in the other stream types primarily due to greater production of shared taxa that were found in all streams. However, despite low invertebrate diversity and productivity, the glacier‐fed stream hosted distinct species assemblages associated with unique cycles of stream flow, water temperature, turbidity, and nutrient concentrations, which contributed to higher beta diversity between streams. Our findings suggest that the loss of glacier‐melt contributions to rivers may result in increased freshwater invertebrate production but reduced beta diversity, which could have implications for community stability and the capacity of landscapes to support higher‐level consumers, including fishes.

Funder

Alaska Climate Adaptation Science Center, University of Alaska Fairbanks

Division of Graduate Education

Office of Experimental Program to Stimulate Competitive Research

Pacific Northwest Research Station

Publisher

Wiley

Subject

Aquatic Science,Oceanography

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3