Small area prediction of seat‐belt use rates using a Bayesian hierarchical unit‐level Poisson model with multivariate random effects

Author:

Berg Emily1ORCID

Affiliation:

1. Department of Statistics Iowa State University AmesIowa 50011 USA

Abstract

SummaryThe Iowa Seat‐Belt Use Survey is an annual survey designed to provide estimates of seat‐belt use rates for the state of Iowa in the United States. A desire for county level (substate) estimates motivates the need for small area estimation. Developing a small area model for the seat‐belt survey data is challenging for two mean reasons. First, the data consist of multivariate counts. Second, the same sampling units are observed for five different time points. An appropriate model should reflect multivariate dependencies and the longitudinal data structure. We address these challenges though a unit‐level Bayesian hierarchical model. The observed counts have Poisson distributions. Latent random effects capture multivariate associations and correlations among the observations for the same sampling unit observed at different time points. We employ the posterior predictive distribution for model comparisons. Using the selected model, we construct small area predictors of two measures of seat‐belt use at the county level for 5 years.

Publisher

Wiley

Subject

Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3