Gaussian mixture model-based neural network for short-term wind power forecast
Author:
Affiliation:
1. Department of Electrical Engineering; National Chung Cheng University; Chiayi Taiwan
2. Institute of Nuclear Energy Research; Taoyuan Taiwan
Publisher
Hindawi Limited
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation
Reference26 articles.
1. A review of combined approaches for prediction of short-term wind speed and power;Tascikaraoglu;Renew Sust Energ Rev,2014
2. Trading wind generation in short-term energy markets;Bathurst;IEEE Trans on Power System,2002
3. Wind Power in Power Systems
4. Analysis and application of forecasting models in wind power integration: a review of multi-step-ahead wind speed forecasting models;Wang;Renew Sust Energ Rev,2016
5. A review of wind power and wind speed forecasting methods with different time horizons;Soman;North American Power Symposium (NAPS),2010
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Survey of Wind Power Output Power Forecasting Technology;Highlights in Science, Engineering and Technology;2023-05-21
2. Gaussian mixture model for extreme wind turbulence estimation;Wind Energy Science;2022-10-26
3. Hybrid Chaotic Maps-Based Artificial Bee Colony for Solving Wind Energy-Integrated Power Dispatch Problem;Energies;2022-06-23
4. Wind power bidding strategy by harmonizing neural network and genetic algorithm;International Journal of Green Energy;2022-01-18
5. An intelligent approach towards very short-term load forecasting;International Journal of Emerging Electric Power Systems;2021-04-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3