Predicting the future performance of soccer players

Author:

Arndt Cornelius1,Brefeld Ulf2

Affiliation:

1. MaibornWolff GmbH 60329 Frankfurt/Main Germany

2. Machine Learning Group Leuphana University of Lüneburg 21335 Lüneburg Germany

Publisher

Wiley

Subject

Computer Science Applications,Information Systems,Analysis

Reference21 articles.

1. G.Bosc M.Kaytoue C.Raïssi andJ.‐F.Boulicaut Strategic pattern discovery in RTS‐games for e‐sport with sequential pattern mining In Proceedings of the ECML/PKDD 2013 Workshop on Machine Learning and Data Mining for Sports Analytics (MLSA2013) 2013.

2. J. C.WeissandS.Childers Maps for reasoning in ultimate In Proceedings of the ECML/PKDD 2013 Workshop on Machine Learning and Data Mining for Sports Analytics (MLSA2013) 2013.

3. R.Willer A.Sharkey andS.Freq Reciprocity on the hardwood: passing patterns among NBA players In Proceedings of the MIT Sloan Sports Analytics Conference 2012.

4. T. K.Clark A. W.Johnson andA. J.Stimpson Going for three: predicting the likelihood of field goal success with logistic regression In Proceedings of the MIT Sloan Sports Analytics Conference 2013.

5. G.GaneshapillaiandJ.Guttag Predicting the next pitch In Proceedings of the MIT Sloan Sports Analytics Conference 2012.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using Ensemble Machine Learning Algorithms to Predict a Scrabble Player's Rating;2023 14th International Conference on Information and Communication Systems (ICICS);2023-11-21

2. Research on football players' physical fitness score based on multi-level comprehensive evaluation model;2022 3rd Asia-Pacific Conference on Image Processing, Electronics and Computers;2022-04-14

3. Uniform Manifold Approximation and Projection Analysis of Soccer Players;Entropy;2021-06-23

4. A football player rating system;Journal of Sports Analytics;2021-01-07

5. Predicting Physiological Variables of Players that Make a Winning Football Team: A Machine Learning Approach;Computational Science and Its Applications – ICCSA 2021;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3