Origin and characterization of alpha smooth muscle actin-positive cells during murine lung development

Author:

Moiseenko Alena1,Kheirollahi Vahid1,Chao Cho-Ming1,Ahmadvand Negah1,Quantius Jennifer1,Wilhelm Jochen1,Herold Susanne1,Ahlbrecht Katrin2,Morty Rory E.2,Rizvanov Albert A.3,Minoo Parviz4,El Agha Elie1,Bellusci Saverio13ORCID

Affiliation:

1. a Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, German Center for Lung Research (DZL), Giessen, Germany

2. b Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Bad Nauheim, Germany

3. c Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia

4. d Department of Pediatrics, Division of Newborn Medicine, University of Southern California, Childrens Hospital Los Angeles, Los Angeles, California, USA

Abstract

Abstract ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2, Wt1CreERT2, Gli1CreERT2, and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%–97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence-activated cell sorting-based isolation of different subpopulations of ACTA2+ lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells.

Funder

Deutsche Forschungsgemeinschaft

Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz

Universtätsklinikum Giessen Marburg

Universities of Giessen and Marburg Lung Center

German Center for Lung Research

COST

DZL

Excellence Cluster Cardio-Pulmonary System

Hastings foundation

NHLBI

DFG

UKGM

FOKOOPV

Program of Competitive Growth of Kazan Federal University

Kazan Federal University

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3