Investigation on enhancement of filler dispersion and prediction of mechanical behavior of hexagonal boron nitride/epoxy nanocomposites through machine learning and deep learning models

Author:

Varughese Jerrin Joy1ORCID,M. S. Sreekanth1ORCID

Affiliation:

1. Department of Manufacturing Engineering School of Mechanical Engineering, Vellore Institute of Technology Vellore Tamil Nadu India

Abstract

AbstractTwo‐dimensional hexagonal boron nitride (hBN) based nanocomposites exhibit excellent mechanical and thermal properties for various electronics, automotive, and aerospace applications. The present work gives a novel approach to fabricating hexagonal boron nitride/epoxy nanocomposites using isopropanol and dimethyl ketone as dispersants in two different routes and to predict mechanical characteristics employing deep learning and machine learning models. Nanocomposites were fabricated by employing casting techniques with varying concentrations of hBN, spanning from 0.25 to 1 wt%, utilizing dispersing solvents. The nanocomposites were analyzed for mechanical behavior, highlighting a notable improvement in the mechanical properties at 0.5 wt% isopropanol dispersed hBN. It showcased 61% improvement in tensile strength, 38.41% increase in flexural strength, and 35.80% increase in flexural modulus respectively as compared to the pristine epoxy. The Halpin Tsai analytical model showed agreement with the elastic modulus calculated experimentally. The fractured SEM micrograph supported the improved dispersion of the hBN nanocomposite. Thermal stability of 0.5 wt% isopropanol dispersed hBN/epoxy nanocomposite revealed an improvement by 8°C at 50% degradation as compared to the pristine epoxy. Linear regression, random forest regression, support vector regression, and deep neural network (DNN) were employed to predict values. DNN proved better results by showcasing low prediction loss and high R2 values (0.99468–0.99966).Highlights hBN/epoxy nanocomposite with isopropanol and dimethyl ketone as dispersants. 0.5% hBN loading in isopropanol exhibited improved mechanical characteristics. The Halpin Tsai model was employed for evaluating theoretical elastic modulus. Improved thermal stability and filler dispersion by optimized hBN/epoxy combination. Deep neural network showed higher R2 value and lower prediction loss.

Funder

VIT University

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3