Assessing the efficacy of water management and wheat straw addition in mitigating methane emissions from rice paddy fields

Author:

Rassaei Farzad1ORCID

Affiliation:

1. Department of Soil Science, Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran

Abstract

AbstractTo improve the quality of soil, agriculture typically uses organic additions like wheat straw (WS). Water management (WM) methods such as alternative wetness and dryness irrigation (AWDI) in paddy rice farming can increase water use efficiency and reduce greenhouse gas (GHG) emissions. In this study, a randomized complete block design (RCBD) pot greenhouse experiment was conducted to assess the effects of WM (CFI (continued flooding irrigation) and AWDI), WS (15.0 and 30.0 ton ha−1), and their interaction (WS*WM) on CH4 emissions and rice yield in a paddy calcareous soil cultivated with rice. The largest CH4 emission occurred 30 and 70 days following rice planting. Single applications of WS at 15.0 and 30.0 ton ha−1 significantly increased CH4 emissions by 19.60% and 68.70% (P < 0.01), respectively, compared to the Control. Compared to CFI, the AWDI reduced CH4 emissions by 31.20% (P < 0.01). The correlations between AWDI and CH4 emissions in days after rice planting were significantly negative at the 0.01 level based on Pearson correlation. Adding WS in the AWDI significantly decreased CH4 emissions by 27.70 and 25.64% in 15.0 and 30.0 ton ha−1 added WS (P < 0.05), respectively, compared to sole WS. Both rates of WS resulted in a considerable increase in biomass and rice grain compared to the Control, while the AWDI had no significant effect on biomass and grain yield. Our data showed significant interaction between AWDI and WS on biomass. Our study shows that the AWDI saved 18.50% water compared to the CFI.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Reference63 articles.

1. IPCC. Climate Change.The physical science basis in contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (eds Stocker T. F. et al.) 710–716 (Cambridge and New York 2013).2013.

2. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models

3. Production, oxidation, emission and consumption of methane by soils: A review

4. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3