Learning counterfactual outcomes of MOOC multiple learning behaviors

Author:

Zhang Mengjie1ORCID,Li Jingtao12ORCID,Huang Qixuan1,Kan Haibin23

Affiliation:

1. Software School Fudan University Shanghai China

2. Shanghai Engineering Research Center of Blockchain Shanghai China

3. Shanghai Key Laboratory of Intelligent Information Processing, School of Computer Science Fudan University Shanghai China

Abstract

AbstractThe absence of counterfactual outcomes presents a fundamental challenge in causal inference. However, existing work typically does not apply to multiple learning behaviors of Massive Open Online Courses. This paper proposes a counterfactual representation learning model based on multitask learning, applicable to any dimension, and any type of treatment. The model consists of a potential outcome network and a propensity score encoder, which shares feature information from the base layer. The propensity scores calculated by the encoder are then utilized in the potential outcome network to mitigate selection bias. Experiments based on real‐world data sets demonstrate the superior performance of our model compared with baselines.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission

Publisher

Wiley

Subject

General Engineering,Education,General Computer Science

Reference37 articles.

1. Predict and Intervene

2. E.Daxberger E.Nalisnick J. U.Allingham J.Antorán andJ. M.Hernández‐Lobato Bayesian deep learning via subnetwork inference International Conference on Machine Learning PMLR 2021 pp.2510–2521.

3. Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements

4. H.Gulen C. E.Jens andT. B.Page The heterogeneous effects of default on investment: An application of causal forest in corporate finance 2021 Working Paper.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3