Compressor‐Driven Titanium and Magnesium Hydride Systems for Thermal Energy Storage: Thermodynamic Assessment

Author:

Singh Uday Raj1,Bhogilla Satya Sekhar1ORCID,Jiawei Wang2ORCID,Sou Hosokai2,Itoko Saita2

Affiliation:

1. Department of Mechanical Engineering Indian Institute of Technology Jammu Jammu India

2. National Institute of Advanced Industrial Science and Technology Tsukuba Japan

Abstract

ABSTRACTMetal hydrides enable excellent thermal energy storage due to their high energy density, extended storage capability, and cost‐effective operation. A metal hydride‐driven storage system couples two reactors that assist in thermochemical storage using cyclic operation. Metal hydride reactors, operating at both low and high temperatures, serve for the storage of hydrogen and thermal energy, respectively. The integration of efficient thermal energy storage technology is known to enhance the efficiency of solar thermal systems. In this regard, during the peak hours of solar energy, the high‐temperature supply heat can be utilized to store hydrogen gas in the low‐temperature reactor, which simultaneously facilitates energy storage in the high‐temperature reactor. Moreover, the temperature and energy released from the reactors are highly dependent on the pressure of the gas. As a result, installing a compressor between the low and high‐temperature metal hydride reactors can help generate additional outputs, such as a cooling effect. This paper conducts a thermodynamic analysis to assess the system's performance, considering parameters such as thermal storage efficiency, coefficient of performance (COP), and COPCCH (combined cooling and heating based COP). Moreover, the performance analysis was carried out for two cases, that is, high‐temperature titanium hydride (TiH2) and magnesium hydride (MgH2). The results show that MgH2 and TiH2 achieve a maximum COPCCH of 1.08 and 0.9, respectively, and system storage efficiency of 76.15% and 74.34%, respectively. In spite of having lower efficiency than MgH2, the TiH2‐based system has the ability to recover heat at a very high temperature.

Funder

New Energy and Industrial Technology Development Organization

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3