Physiologically vulnerable or resilient? Tropical birds, global warming, and redistributions

Author:

Monge Otto1ORCID,Maggini Ivan2ORCID,Schulze Christian H.3,Dullinger Stefan3,Fusani Leonida24

Affiliation:

1. Vienna Doctoral School of Ecology and Evolution University of Vienna Djerassiplatz 1 1030 Vienna Austria

2. Konrad‐Lorenz Institute of Ethology University of Veterinary Medicine Savoyenstrasse 1a 1160 Vienna Austria

3. Department of Botany and Biodiversity Research University of Vienna Rennweg 14 1030 Vienna Austria

4. Department of Behavioural and Cognitive Biology University of Vienna Althanstrasse 14 1090 Vienna Austria

Abstract

AbstractTropical species are considered to be more threatened by climate change than those of other world regions. This increased sensitivity to warming is thought to stem from the assumptions of low physiological capacity to withstand temperature fluctuations and already living near their limits of heat tolerance under current climatic conditions. For birds, despite thorough documentation of community‐level rearrangements, such as biotic attrition and elevational shifts, there is no consistent evidence of direct physiological sensitivity to warming. In this review, we provide an integrative outlook into the physiological response of tropical birds to thermal variation and their capacity to cope with warming. In short, evidence from the literature suggests that the assumed physiological sensitivity to warming attributed to tropical biotas does not seem to be a fundamental characteristic of tropical birds. Tropical birds do possess the physiological capacities to deal with fluctuating temperatures, including high‐elevation species, and are prepared to withstand elevated levels of heat, even those living in hot and arid environments. However, there are still many unaddressed points that hinder a more complete understanding of the response of tropical birds to warming, such as cooling capacities when exposed to combined gradients of heat and humidity, the response of montane species to heat, and thermoregulation under increased levels of microclimatic stress in disturbed ecosystems. Further research into how populations and species from different ecological contexts handle warming will increase our understanding of current and future community rearrangements in tropical birds.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3