Study of hydrothermal characteristics of large‐scale water conveyance trunk canals in seasonally frozen ground regions under the influence of different initial water contents

Author:

Wang Miao12,Hai Mingwei2,Su Anshuang1ORCID,Xu Jinzhong1,Guo Yanxiu1,Yan Han1

Affiliation:

1. Heilongjiang Province Hydraulic Research Institute Harbin China

2. School of Architectural and Civil Engineering Harbin University of Science and Technology Harbin China

Abstract

AbstractIn seasonal frozen soil, freezing and thawing can change the physical and mechanical properties and affect slope stability. There are complex moisture conditions in the main water transfer canal. A study of the hydrothermal evolution of canals with different initial water contents under the action of freezing and thawing is of great importance for the prevention and control of canal slope slides. Hydrothermal coupling models are the key to revealing the canal's hydrothermal evolution. As some of the modeling parameters in the current hydrothermal coupling model are based on empirical values, particularly those in the van Genuchten equation, which are not necessarily related to soil properties, they are not suitable for analyzing the hydrothermal evolution of canals. This paper determines the soil‐water characteristic curve from the cumulative curve of particle gradation in the subsoil, and then determines the hydraulic parameters of the subsoil using the VG model, which then corrects the hydrothermal coupling model. The method of modifying the hydrothermal coupling model is original, which makes the model more realistically reflect drainage soil characteristics. During freezing and thawing of channel slopes with different initial water contents (21%, 25%, 29%, 33%, 37%, and 41%), temperature field, water field, and ice content distributions were investigated. Using the V‐G model, the optimal parameters for canal subsoil were a = 0.06, n = 1.2, and m = 0.17, and temperature distribution trends between canals with different water contents were basically similar. Water will accumulate at the bottom as the liquid water content increases at the canal boundary.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3