Affiliation:
1. Department of Biostatistics & Data Science University of Kansas Medical Center Kansas City Kansas USA
2. Stowers Institute for Medical Research Kansas City Missouri USA
3. University of Kansas Cancer Center Kansas City Kansas USA
4. Kansas Institute for Precision Medicine University of Kansas Medical Center Kansas City Kansas USA
Abstract
AbstractThe evolution of omics and computational competency has accelerated discoveries of the underlying biological processes in an unprecedented way. High throughput methodologies, such as flow cytometry, can reveal deeper insights into cell processes, thereby allowing opportunities for scientific discoveries related to health and diseases. However, working with cytometry data often imposes complex computational challenges due to high‐dimensionality, large size, and nonlinearity of the data structure. In addition, cytometry data frequently exhibit diverse patterns across biomarkers and suffer from substantial class imbalances which can further complicate the problem. The existing methods of cytometry data analysis either predict cell population or perform feature selection. Through this study, we propose a “wisdom of the crowd” approach to simultaneously predict rare cell populations and perform feature selection by integrating a pool of modern machine learning (ML) algorithms. Given that our approach integrates superior performing ML models across different normalization techniques based on entropy and rank, our method can detect diverse patterns existing across the model features. Furthermore, the method identifies a dynamic biomarker structure that divides the features into persistently selected, unselected, and fluctuating assemblies indicating the role of each biomarker in rare cell prediction, which can subsequently aid in studies of disease progression.
Subject
Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献