Imputation of missing values in lipidomic datasets

Author:

Frölich Nicolas1ORCID,Klose Christian1,Widén Elisabeth2,Ripatti Samuli234,Gerl Mathias J.1ORCID

Affiliation:

1. Lipotype GmbH Dresden Germany

2. Institute for Molecular Medicine Finland (FIMM) HiLIFE University of Helsinki Helsinki Finland

3. Broad Institute of MIT and Harvard Cambridge Massachusetts USA

4. Department of Public Health Faculty of Medicine University of Helsinki Helsinki Finland

Abstract

AbstractLipidomic data often exhibit missing data points, which can be categorized as missing completely at random (MCAR), missing at random, or missing not at random (MNAR). In order to utilize statistical methods that require complete datasets or to improve the identification of potential effects in statistical comparisons, imputation techniques can be employed. In this study, we investigate commonly used methods such as zero, half‐minimum, mean, and median imputation, as well as more advanced techniques such as k‐nearest neighbor and random forest imputation. We employ a combination of simulation‐based approaches and application to real datasets to assess the performance and effectiveness of these methods. Shotgun lipidomics datasets exhibit high correlations and missing values, often due to low analyte abundance, characterized as MNAR. In this context, k‐nearest neighbor approaches based on correlation and truncated normal distributions demonstrate best performance. Importantly, both methods can effectively impute missing values independent of the type of missingness, the determination of which is nearly impossible in practice. The imputation methods still control the type I error rate.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3