VPBrowse: Genome‐based representation of MS/MS spectra to quantify 10,000 bovine proteins

Author:

Paramasivan Selvam12,Ashick Mohamed3,Dudley Kevin J.2,Satake Nana1,Mills Paul C.1,Sadowski Pawel2ORCID,Nagaraj Shivashankar H.45

Affiliation:

1. School of Veterinary Science The University of Queensland Gatton Queensland Australia

2. Central Analytical Research Facility Queensland University of Technology Brisbane Queensland Australia

3. LifeBytes India Private Limited Bengaluru Karnataka India

4. Centre for Genomics and Personalised Health Queensland University of Technology Brisbane Queensland Australia

5. Translational Research Institute Brisbane Queensland Australia

Abstract

AbstractSWATH is a data acquisition strategy acclaimed for generating quantitatively accurate and consistent measurements of proteins across multiple samples. Its utility for proteomics studies in nonlaboratory animals, however, is currently compromised by the lack of sufficiently comprehensive and reliable public libraries, either experimental or predicted, and relevant platforms that support their sharing and utilization in an intuitive manner. Here we describe the development of the Veterinary Proteome Browser, VPBrowse (http://browser.proteo.cloud/), an on‐line platform for genome‐based representation of the Bos taurus proteome, which is equipped with an interactive database and tools for searching, visualization, and building quantitative mass spectrometry assays. In its current version (VPBrowse 1.0), it contains high‐quality fragmentation spectra acquired on QToF instrument for over 36,000 proteotypic peptides, the experimental evidence for over 10,000 proteins. Data can be downloaded in different formats to enable analysis using popular software packages for SWATH data processing whilst normalization to iRT scale ensures compatibility with diverse chromatography systems. When applied to published blood plasma dataset from the biomarker discovery study, the resource supported label‐free quantification of additional proteins not reported by the authors previously including PSMA4, a tissue leakage protein and a promising candidate biomarker of animal's response to dehorning‐related injury.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3