Deep causal feature extraction and inference with neuroimaging genetic data

Author:

Yao Yuchen1,Charkraborty Dipnil2,Zhang Lin2,Shen Xiaotong1ORCID,Pan Wei2ORCID,

Affiliation:

1. School of Statistics University of Minnesota Minneapolis Minnesota USA

2. Division of Biostatistics, School of Public Health University of Minnesota Minneapolis Minnesota USA

Abstract

Alzheimer's disease (AD) is a severe public health issue in the world. Magnetic Resonance Imaging (MRI) offers a way to study brain differences between AD patients and healthy individuals through feature extraction and comparison. However, in most previous works, the extracted features were not aimed to be causal, hindering biological understanding and interpretation. In order to extract causal features, we propose using instrumental variable (IV) regression with genetic variants as IVs. Specifically, we propose Deep Feature Extraction via Instrumental Variable Regression (DeepFEIVR), which uses a nonlinear neural network to extract causal features from three‐dimensional neuroimages to predict an outcome (eg, AD status in our application) while maintaining a linear relationship between the extracted features and IVs. DeepFEIVR not only can handle high dimensional individual‐level data for model building, but also is applicable to GWAS summary data to test associations of the extracted features with the outcome in subsequent analysis. In addition, we propose an extension of DeepFEIVR, called DeepFEIVR‐CA, for covariate adjustment (CA). We apply DeepFEIVR and DeepFEIVR‐CA to the Alzheimer's Disease Neuroimaging Initiative (ADNI) individual‐level data as training data for model building, then apply to the UK Biobank neuroimaging and the International Genomics of Alzheimer's Project (IGAP) AD GWAS summary data, showcasing how the extracted causal features are related to AD and various brain endophenotypes.

Funder

National Institutes of Health

Minnesota Supercomputing Institute, University of Minnesota

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3