Affiliation:
1. Department of Physics B. S. Abdur Rahman Crescent Institute of Science and Technology Chennai India
2. New Technologies–Research Centre University of West Bohemia Plzeň Czech Republic
3. Microwave Labroatory, Department of Physics Indian Institute of Technology Madras Chennai India
Abstract
AbstractIron oxide (Fe2O3) nanoparticles (NPs), graphene nanoplatelets (GNPs), and nanodiamonds (NDs) reinforced poly(vinylidene fluoride‐co‐hexafluoropropylene) (PVDF‐HFP) nanocomposites were synthesized by a solvent casting technique. The structure and morphology of synthesized nanocomposites were studied using Fourier‐transform infrared spectroscopy, X‐ray diffraction, and scanning electron microscopy. The thermal behavior of polymer nanocomposites (PNCs) was studied by the thermogravimetric analysis and the derivative thermogravimetry. The dielectric measurements were carried out within the temperature range from 40 to 150°C and in the frequency range from 50 Hz to 15 MHz. At 50 Hz, 140°C, the highest dielectric constant of 92.46 was noted, for the PVDF‐HFP + 10 wt% Fe2O3 + 6 wt% GNPs + 3 wt% NDs and the highest dielectric loss tangent has been observed to be 24.75 at 50 Hz, 140°C for the PVDF‐HFP + 10 wt% Fe2O3 + 4 wt% GNPs + 2 wt% NDs. The electromagnetic interference shielding effectiveness (EMI SE) was studied in the X‐band and Ku‐band frequency regions (8–18 GHz). High EMI SE values of 31.60 dB and 34 dB were observed for PVDF‐HFP/Fe2O3/GNPs/NDs nanocomposites with 10 wt% Fe2O3 + 8 wt% GNPs + 4 wt% NDs in X‐band and Ku‐band, respectively. These findings suggests PVDF‐HFP/Fe2O3/GNPs/NDs‐based PNCs as an appealing material for EMI shielding applications.
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献