Optimizing observational arrays for biogeochemistry in the tropical Pacific by estimating correlation lengths

Author:

Chu Winnie U.1ORCID,Mazloff Matthew R.2,Verdy Ariane2,Purkey Sarah G.2,Cornuelle Bruce D.2

Affiliation:

1. Program in Atmospheric and Oceanic Sciences Princeton University Princeton New Jersey USA

2. Scripps Institution of Oceanography La Jolla California USA

Abstract

AbstractGlobal climate change has impacted ocean biogeochemistry and physical dynamics, causing increases in acidity and temperature, among other phenomena. These changes can lead to deleterious effects on marine ecosystems and communities that rely on these ecosystems for their livelihoods. To better quantify these changes, an array of floats fitted with biogeochemical sensors (BGC‐Argo) is being deployed throughout the ocean. This paper presents an algorithm for deriving a deployment strategy that maximizes the information captured by each float. The process involves using a model solution as a proxy for the true ocean state and carrying out an iterative process to identify optimal float deployment locations for constraining the model variance. As an example, we use the algorithm to optimize the array for observing ocean surface dissolved carbon dioxide concentrations (pCO2) in a region of strong air–sea gas exchange currently being targeted for BGC‐Argo float deployment. We conclude that 54% of the pCO2 variability in the analysis region could be sampled by an array of 50 Argo floats deployed in specified locations. This implies a relatively coarse average spacing, though we find the optimal spacing is nonuniform, with a denser sampling being required in the eastern equatorial Pacific. We also show that this method could be applied to determine the optimal float deployment along ship tracks, matching the logistics of real float deployment. We envision this software package to be a helpful resource in ocean observational design anywhere in the global oceans.

Funder

National Oceanic and Atmospheric Administration

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3