Calpain Determines the Propensity of Adult Hippocampal Neural Stem Cells to Autophagic Cell Death Following Insulin Withdrawal

Author:

Chung Kyung Min1,Park Hyunhee1,Jung Seonghee1,Ha Shinwon1,Yoo Seung-Jun1,Woo Hanwoong1,Lee Hyang Ju2,Kim Seong Who2,Kim Eun-Kyoung13,Moon Cheil13,Yu Seong-Woon13

Affiliation:

1. Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea

2. Department of Biochemistry and Molecular Biology Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

3. Neurometabolomics Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea

Abstract

Abstract Programmed cell death (PCD) has significant effects on the function of neural stem cells (NSCs) during brain development and degeneration. We have previously reported that adult rat hippocampal neural stem (HCN) cells underwent autophagic cell death (ACD) rather than apoptosis following insulin withdrawal despite their intact apoptotic capabilities. Here, we report a switch in the mode of cell death in HCN cells with calpain as a critical determinant. In HCN cells, calpain 1 expression was barely detectable while calpain 2 was predominant. Inhibition of calpain in insulin-deprived HCN cells further augmented ACD. In contrast, expression of calpain 1 switched ACD to apoptosis. The proteasome inhibitor lactacystin blocked calpain 2 degradation and elevated the intracellular Ca2+ concentration. In combination, these effects potentiated calpain activity and converted the mode of cell death to apoptosis. Our results indicate that low calpain activity, due to absence of calpain 1 and degradation of calpain 2, results in a preference for ACD over apoptosis in insulin-deprived HCN cells. On the other hand, conditions leading to high calpain activity completely switch the mode of cell death to apoptosis. This is the first report on the PCD mode switching mechanism in NSCs. The dynamic change in calpain activity through the proteasome-mediated modulation of the calpain and intracellular Ca2+ levels may be the critical contributor to the demise of NSCs. Our findings provide a novel insight into the complex mechanisms interconnecting autophagy and apoptosis and their roles in the regulation of NSC death. Stem Cells  2015;33:3052—3064

Funder

Bio & Medical Technology Development Program of the National Research Foundation of Korea

DGIST Convergence Science Center Program

Ministry of Science, ICT and Future Planning of Korea

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3