Antimicrobial and food barrier properties of polyvinyl alcohol–lactic acid food packaging films

Author:

Madivoli E. S.1ORCID,Kisato J.2,Gichuki J.1,Wangui C. M.13,Kimani P. K.14,Kareru P. G.1

Affiliation:

1. Department of Chemistry Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya

2. Department of Fashion and Design Kenyatta University Nairobi Kenya

3. Pharmaceutical Chemistry Department Mount Kenya University Thika Kenya

4. Department of Engineering, Graduate School of Engineering Gifu University Gifu Japan

Abstract

AbstractMicrobial contamination and the need for sustainable food production are driving the shift toward biodegradable food packaging materials. There is an urgent need to develop smart food packaging materials that can prevent contamination and prolong the shelf life of meat. To achieve this, the physical–chemical characteristics of polyvinyl alcohol (PVA)‐based packaging films were enhanced through incorporation of lactic acid and anthocyanins to act as a pH indicator. The mechanical, hydrophilic, barrier, and antibacterial properties of the composite films were then evaluated to test the ability of the film to act as a packaging material. In addition, the surface morphology was studied by scanning electron microscopy (SEM), the functional groups by Fourier transform infrared (FTIR) spectroscopy, optical transparency using ultraviolet–visible (UV–vis) spectrophotometer, crystallinity by powder diffraction, and their thermal properties by thermal gravimetric analysis (TGA). The films had a swelling degree (SD) of 222.60 ± 21.19%, dry content (DC) of 70.56 ± 2.54%, moisture content (MC) of 29.44 ± 2%, ALRO moisture (AM) content of 41.85 ± 5.06, and total soluble matter (TSM) of 8.05 ± 1.05%. Moreover, incorporation of lactic acid enhanced the mechanical and the thermal properties of the films but it reduced their optical transparency. The water vapor permeability (WVP) was found to be 14.32 × 10−3 g−1 s−1 Pa−1 and it inhibited the growth of Escherichia coli (EC) (10.67 ± 0.58 cm), Staphylococcus aureus (SA) (10.50 ± 0.40 cm), Pseudomonas aeruginosa (PA) (10.33 ± 0.58 cm), and Staphylococcus epidermidis (11 ± 1 cm) but not Bacillus subtilis (BS). The film's hue changed from red to green over time when used as a packaging material for meat under ambient condition indicating a deterioration in freshness. In conclusion, the developed packaging film exhibited enhanced mechanical, antimicrobial, and hydrophilic properties and it can be used to store and relay information when stored meat begins to decompose through a visible color change of the films.

Funder

International Centre of Insect Physiology and Ecology

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3