In‐situ measurement of dissolved organic carbon and total organic carbon in fresh surface waters: Lab validation of a portable field meter

Author:

Collins Sean E.1ORCID,Moulton Margaret E.1,Flotemersch Joseph E.2

Affiliation:

1. Division of Plant and Soil Sciences West Virginia University Morgantown West Virginia USA

2. Center for Environmental Measurement and Modeling U.S. Environmental Protection Agency Cincinnati Ohio USA

Abstract

AbstractNonliving organic matter, including organic carbon, in freshwater systems provides energy inputs to food webs and supports various ecosystem functions. Unusually high organic carbon levels can occur naturally in aquatic habitats such as wetlands and blackwater rivers and streams. However, values may also be high due to anthropogenic influences. In recent years, increasing levels of organic carbon have been observed and suggested as drivers of brownification and increased observation of foam on surface waters. Total organic carbon (TOC) and dissolved organic carbon (DOC) are not commonly included in field studies of aquatic ecosystems because of sampling logistics and resources required for laboratory measurement. As a potential alternative to laboratory analysis, we evaluated the effectiveness of a portable field meter by comparing laboratory results to data collected in situ. Comparisons were made at 43 surface water sites across northern West Virginia. At each of these sites, a field measurement was recorded using a Real TOC/DOC Field Meter, and a water sample was collected and transported for laboratory measurement using a Shimadzu TOC‐V analyzer. Data from the laboratory and field for each site were compared using bivariate analysis and concordance correlation on matched pairs. Poor agreement existed between field and lab measurements, so a novel data model was created using laboratory‐derived data for further comparison. Substantial accuracy was achieved using the new data model. This suggests that the Real TOC/DOC Field Meter is a viable instrument for field measurement of organic carbon in aquatic ecosystems and may aid in monitoring and management decisions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3