Affiliation:
1. School of Microelectronics Hefei University of Technology Hefei 230009 China
Abstract
SummaryThis brief proposes a new lightweight authenticated encryption algorithm SIMON‐GCM for Internet of Things (IoT) security, which realizes the combination of SIMON block cipher and Galois/Counter Mode (GCM). The designed SIMON circuit supports 128/192/256‐bit key size, which improves the flexibility and enlarges the range of applications. Moreover, the scheme of 32‐cycle Galois field (GF) multiplier in GF(2128) is adopted to effectively reduce the hardware cost of the Galois Hash (GHASH) function in GCM. At the same time, a finite state machine (FSM) is used to run the SIMON and GHASH modules in parallel, thus shortening the authenticated encryption time. The whole circuit is designed and implemented in field programmable gate array (FPGA) platforms. It is measured to yield a throughput of 32.4 Gbps when consuming 331 slices in Artix‐7. Compared with the existing authenticated encryption algorithms, the proposed algorithm achieves lower resource consumption and better flexibility.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献