Power stabilization control of wireless charging system based on LCL‐P compensation structure

Author:

Yue Yonghui1ORCID,Sun Zhenao1,Lu Mingyu1

Affiliation:

1. College of Information Science and Engineering Northeastern University Shenyang China

Abstract

AbstractTo enhance the stabilizing function and boost the output power of the inductive coupling power transfer (ICPT) system, a power stabilization control method based on LCL‐P resonance compensation for a wireless energy transmission system is proposed. “L” represents inductance, “C” represents capacitance, “LCL” refers to the primary‐side compensation structure, and “P” indicates that the secondary side is compensated in parallel . Firstly, this paper synthesizes the modeling principle of the gyrator equivalent model of the resonant circuit and coupled inductor, graphically analyzes the resonant compensation structure, and derives the circuit characteristics of the LCL‐P compensation structure. Then, this paper proposes an improved control strategy for the Maximum Power Point Tracking (MPPT) algorithm to dynamically track the output power and thus obtain the optimal operating point through frequency conversion. Lastly, using MATLAB/Simulink software to build the simulation model of the wireless charging system through parameter design, the impact of the conventional DC/DC power control method is contrasted with the algorithmic control suggested in this paper. The results demonstrate that: the device can realize power transfer of 2.7 KW level, the energy transfer efficiency reaches more than 90%, the inverter realizes soft‐switching operation, and the improved MPPT algorithmic control strategy proposed in this paper is utilized to achieve better closed‐loop control of the system. The excellent characteristics of the LCL‐P compensation structure in high‐power transmission applications, as well as the correctness and feasibility of the control algorithm proposed in this paper, are demonstrated through simulation and practical experiments. This is a significant step towards improving the wide‐range adaptation of the wireless charging system, which is based on the LCL‐P resonance compensation to the changes in the load and coupling.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3