Points of interest linear attention network for real‐time non‐rigid liver volume to surface registration

Author:

Chen Zeming12,Zou Beiji12,Kui Xiaoyan12,Shi Yangyang12,Lv Ding12,Chen Liming3

Affiliation:

1. School of Computer Science and Engineering Central South University Changsha Hunan China

2. Hunan Engineering Research Center of Machine Vision and Intelligent Medicine Changsha Hunan China

3. Ecole Centrale de Lyon University of Lyon Lyon France

Abstract

AbstractBackgroundIn laparoscopic liver surgery, accurately predicting the displacement of key intrahepatic anatomical structures is crucial for informing the doctor's intraoperative decision‐making. However, due to the constrained surgical perspective, only a partial surface of the liver is typically visible. Consequently, the utilization of non‐rigid volume to surface registration methods becomes essential. But traditional registration methods lack the necessary accuracy and cannot meet real‐time requirements.PurposeTo achieve high‐precision liver registration with only partial surface information and estimate the displacement of internal liver tissues in real‐time.MethodsWe propose a novel neural network architecture tailored for real‐time non‐rigid liver volume to surface registration. The network utilizes a voxel‐based method, integrating sparse convolution with the newly proposed points of interest (POI) linear attention module. POI linear attention module specifically calculates attention on the previously extracted POI. Additionally, we identified the most suitable normalization method RMSINorm.ResultsWe evaluated our proposed network and other networks on a dataset generated from real liver models and two real datasets. Our method achieves an average error of 4.23 mm and a mean frame rate of 65.4 fps in the generation dataset. It also achieves an average error of 8.29 mm in the human breathing motion dataset.ConclusionsOur network outperforms CNN‐based networks and other attention networks in terms of accuracy and inference speed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3