Numerical simulation study on propane gas leakage and diffusion law in slope terrain

Author:

Luan Tingting1,Li Xiaoyun1ORCID,Wang Lixun23,Chu Yun3,Zhang Qinghang1,Zhang Xinyu3

Affiliation:

1. School of Safety Engineering Beijing Institute of Petrochemical Technology Beijing China

2. School of Emergency Management and Safety Engineering China University of Mining and Technology‐Beijing Beijing China

3. China Academy of Safety Science and Technology Beijing China

Abstract

AbstractIt is frequent that gas leakage accidents occur at chemical enterprises located in slope terrain. Meet the requirement of urgently studying the gas leakage and diffusion law in slope terrain. In this study, we utilize computational fluid dynamics (CFD) to simulate the scenarios of propane leakage and diffusion under four distinct slope conditions, which are 0°, 10°, 15°, and 20°. The gas diffusion law under different slopes is investigated, and the influence of wind speed and wind direction on the diffusion process is also further analyzed. The study indicates that when the slope exceeds 15°, the change in slope exerts a pronounced influence on the dispersion of propane leakage. Compared with diffusion on flat ground, there is a distinct propane aggregation area at the bottom of the slope terrain. Also, the steeper the slope, the more noticeable the aggregation phenomenon. The increase of wind speed makes propane gas lifted, and the gas aggregation at the bottom of the slope decreases. In particular, at a wind speed of 3.3 m/s, the aggregation of propane at the bottom of the first 15° and 20° slopes is more pronounced. Under the upwind condition, the propane gas is entrained at the slope surface, increasing the propane concentration in the area around the tank, which in turn increases the safety risk. The findings of this study have significant implications for the rational layout of chemical enterprises, gas leakage monitoring, and emergency evacuation planning for leakage accidents. They can also help enhance chemical enterprises' safety prevention abilities and the efficiency of their emergency response.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3