Network pharmacology analysis and experimental verification of the antitumor effect and molecular mechanism of isocryptomerin on HepG2 cells

Author:

Cao Jing‐Long1,Li Shu‐Mei2,Tang Yan‐Jun3,Hou Wen‐Shuang1,Wang An‐Qi1,Li Tian‐Zhu4,Jin Cheng‐Hao135ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, College of Life Science and Technology Heilongjiang Bayi Agricultural University Daqing China

2. Hemodialysis Center Daqing Oilfield General Hospital Daqing China

3. Department of Food Science and Engineering, College of Food Science Heilongjiang Bayi Agricultural University Daqing China

4. Department of Molecular Biology, College of Basic Medical Science Chifeng University Chifeng China

5. National Coarse Cereals Engineering Research Center Daqing China

Abstract

AbstractIsocryptomerin (ISO) is a flavonoid isolated from the natural medicine Selaginellae Herba, which has various pharmacological activities. This study investigated the antitumor effect and underlying molecular mechanism of ISO on hepatocellular carcinoma (HCC) HepG2 cells. The cell viability assay revealed that ISO has a considerable killing effect on HCC cell lines. The apoptosis assay showed that ISO induced mitochondria‐dependent apoptosis through the Bad/cyto‐c/cleaved (cle)‐caspase‐3/cleaved (cle)‐PARP pathway. The network pharmacological analysis found 13 key target genes, and epidermal growth factor receptor (EGFR), AKT, mitogen‐activated protein kinase (MAPK), and reactive oxygen species (ROS) signaling pathways were strongly associated with ISO against HCC. Further verification of the results showed that ISO induced apoptosis by increasing p‐p38 and p‐JNK expression and decreasing p‐EGFR, p‐SRC, p‐ERK, and p‐STAT3 expression. Furthermore, ISO induced G0/G1 phase arrest by downregulating p‐AKT, Cyclin D, and CDK 4 expression and upregulating p21 and p27 expression in HepG2 cells. Moreover, ISO inhibited HepG2 cell migration by decreasing p‐GSK‐3β, β‐catenin, and N‐cadherin expression and increasing E‐cadherin expression. Additionally, ISO promoted ROS accumulation in HepG2 cells, and ISO‐induced apoptosis, arrest cell cycle, and inhibition of migration were reversed by an ROS scavenger, N‐acetyl‐ l‐cysteine. Overall, ISO induced cell apoptosis and cell cycle arrest and inhibited cell migration by ROS‐mediated EGFR, AKT, and MAPK signaling pathways in HepG2 cells.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3