Affiliation:
1. Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
Abstract
AbstractHoney bees (Apis mellifera) express remarkable social interactions and cognitive capabilities that have been studied extensively. In many cases, behavioral studies were accompanied by neurophysiological and neuroanatomical investigations. While most studies have focused on primary sensory neuropils, such as the optic lobes or antennal lobes, and major integration centers, such as the mushroom bodies or the central complex, many regions of the cerebrum (the central brain without the optic lobes) of the honey bee are only poorly explored so far, both anatomically and physiologically. To promote studies of these brain regions, we used anti‐synapsin immunolabeling and neuronal tract tracings followed by confocal imaging and 3D reconstructions to demarcate all neuropils in the honey bee cerebrum and close this gap at the anatomical level. We demarcated 35 neuropils and 25 fiber tracts in the honey bee cerebrum, most of which have counterparts in the fly (Drosophila melanogaster) and other insect species that have been investigated so far at this level of detail. We discuss the role of cerebral neuropils in multisensory integration in the insect brain, emphasize the importance of this brain atlas for comparative studies, and highlight specific architectural features of the honey bee cerebrum.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献