Prediction of upgrade to clinically significant prostate cancer in patients under active surveillance: Performance of a fully automated AI‐algorithm for lesion detection and classification

Author:

Oerther Benedict1ORCID,Engel Hannes1ORCID,Nedelcu Andrea1,Schlett Christopher L.1,Grimm Robert2,von Busch Heinrich3,Sigle August4,Gratzke Christian4,Bamberg Fabian1,Benndorf Matthias1

Affiliation:

1. Department of Radiology, Medical Center‐University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany

2. MR Application Development Siemens Healthcare GmbH Erlangen Germany

3. Diagnostic Imaging Digital & Automation Siemens Healthcare GmbH Erlangen Germany

4. Department of Urology, Medical Center‐University of Freiburg, Faculty of Medicine University of Freiburg Freiburg Germany

Abstract

AbstractBackgroundMultiparametric MRI (mpMRI) improves the detection of aggressive prostate cancer (PCa) subtypes. As cases of active surveillance (AS) increase and tumor progression triggers definitive treatment, we evaluated whether an AI‐driven algorithm can detect clinically significant PCa (csPCa) in patients under AS.MethodsConsecutive patients under AS who received mpMRI (PI‐RADSv2.1 protocol) and subsequent MR‐guided ultrasound fusion (targeted and extensive systematic) biopsy between 2017 and 2020 were retrospectively analyzed. Diagnostic performance of an automated clinically certified AI‐driven algorithm was evaluated on both lesion and patient level regarding the detection of csPCa.ResultsAnalysis of 56 patients resulted in 93 target lesions. Patient level sensitivity and specificity of the AI algorithm was 92.5%/31% for the detection of ISUP ≥ 1 and 96.4%/25% for the detection of ISUP ≥ 2, respectively. The only case of csPCa missed by the AI harbored only 1/47 Gleason 7a core (systematic biopsy; previous and subsequent biopsies rendered non‐csPCa).ConclusionsAI‐augmented lesion detection and PI‐RADS scoring is a robust tool to detect progression to csPCa in patients under AS. Integration in the clinical workflow can serve as reassurance for the reader and streamline reporting, hence improve efficiency and diagnostic confidence.

Publisher

Wiley

Subject

Urology,Oncology

Reference48 articles.

1. EAU Guidelines. Edn. presented at the EAU Annual Congress Amsterdam ISBN 978‐94‐92671‐16‐5. 2022.

2. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part II: Principles of Active Surveillance, Principles of Surgery, and Follow-Up

3. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft Deutsche Krebshilfe AWMF): S3‐Leitlinie Prostatakarzinom Langversion 6.2 2021 AWMF Registernummer: 043/022OL.2021.

4. Delivering Clinical impacts of the MRI diagnostic pathway in prostate cancer diagnosis

5. Improving workflow in prostate MRI: AI-based decision-making on biparametric or multiparametric MRI

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3