ProsTAV, a novel blood‐based test for biopsy decision management in significant prostate cancer

Author:

Gómez Gómez Enrique1,Cano Castiñeira Roque2,Burgos Javier3,Rodríguez Antolín Alfredo4,Miles Brian J.5,Martínez Salamanca Juan Ignacio6,Bianco Fernando7,Fernández Luis8,Calmarza Isabel8,Pastor Jordi9,Butler Ray G.9,de Pedro Nuria8ORCID

Affiliation:

1. Department of Urology Hospital Universitario Reina Sofía, Universidad de Córdoba, Investigación Biomédica de Córdoba Córdoba Spain

2. Department of Urology Hospital Infanta Margarita Córdoba Spain

3. Department of Urology Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria Madrid Spain

4. Department of Urology Hospital Universitario 12 de Octubre Madrid Spain

5. Urologic Oncology Houston Methodist Hospital Houston Texas USA

6. LYX Instituto de Urology Madrid Spain

7. Urological Research Network Miami Lakes Florida USA

8. Life Length SL Madrid Spain

9. Butler Scientifics Barcelona Spain

Abstract

AbstractBackgroundCurrent pathways in early diagnosis of prostate cancer (PCa) can lead to unnecessary biopsy procedures. Here, we used telomere analysis to develop and evaluate ProsTAV®, a risk model for significant PCa (Gleason score >6), with the objective of improving the PCa diagnosis pathway.MethodsThis retrospective, multicentric study analyzed telomeres from patients with serum PSA 3–10 ng/mL. High‐throughput quantitative fluorescence in‐situ hybridization was used to evaluate telomere‐associated variables (TAVs) in peripheral blood mononucleated cells. ProsTAV® was developed by multivariate logistics regression based on three clinical variables and six TAVs. The predictive capacity and accuracy of ProsTAV® were summarized by receiver operating characteristic (ROC) curves and its clinical benefit with decision curves analysis.ResultsTelomeres from 1043 patients were analyzed. The median age of the patients was 63 years, with a median PSA of 5.2 ng/mL and a percentage of significant PCa of 23.9%. A total of 874 patients were selected for model training and 169 patients for model validation. The area under the ROC curve of ProsTAV® was 0.71 (95% confidence interval [CI], 0.62–0.79), with a sensitivity of 0.90 (95% CI, 0.88–1.0) and specificity of 0.33 (95% CI, 0.24–0.40). The positive predictive value was 0.29 (95% CI, 0.21–0.37) and the negative predictive value was 0.91 (95% CI, 0.83–0.99). ProsTAV® would make it possible to avoid 33% of biopsies.ConclusionsProsTAV®, a predictive model based on telomere analysis through TAV, could be used to increase the prediction capacity of significant PCa in patients with PSA between 3 and 10 ng/mL.

Publisher

Wiley

Subject

Urology,Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3