Net carbon sequestration implications of intensified timber harvest in Northeastern U.S. forests

Author:

Brown Michelle L.1ORCID,Canham Charles D.2ORCID,Buchholz Thomas34,Gunn John S.5,Donovan Therese M.6

Affiliation:

1. Vermont Cooperative Fish and Wildlife Research Unit University of Vermont Burlington Vermont USA

2. Cary Institute of Ecosystem Studies Millbrook New York USA

3. Spatial Informatics Group, LLC Pleasanton California USA

4. Gund Institute for the Environment University of Vermont Burlington Vermont USA

5. Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA

6. U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit University of Vermont Burlington Vermont USA

Abstract

AbstractU.S. forests, particularly in the eastern states, provide an important offset to greenhouse gas (GHG) emissions. Some have proposed that forest‐based natural climate solutions can be strengthened via a number of strategies, including increases in the production of forest biomass energy. We used output from a forest dynamics model (SORTIE‐ND) in combination with a GHG accounting tool (ForGATE) to estimate the carbon consequences of current and intensified timber harvest regimes in the Northeastern United States. We considered a range of carbon pools including forest ecosystem pools, forest product pools, and waste pools, along with different scenarios of feedstock production for biomass energy. The business‐as‐usual (BAU) scenario, which represents current harvest practices derived from the analysis of U.S. Forest Service Forest Inventory and Analysis data, sequestered more net CO2 equivalents than any of the intensified harvest and feedstock utilization scenarios over the next decade, the most important time period for combatting climate change. Increasing the intensity of timber harvest increased total emissions and reduced landscape average forest carbon stocks, resulting in reduced net carbon sequestration relative to current harvest regimes. Net carbon sequestration “parity points,” where the regional cumulative net carbon sequestration from alternate intensified harvest scenarios converge with and then exceed the BAU baseline, ranged from 12 to 40 years. A “no harvest” scenario provides an estimate of an upper bound on forest carbon sequestration in the region given the expected successional dynamics of the region's forests but ignores leakage. Regional net carbon sequestration is primarily influenced by (1) the harvest regime and amount of forest biomass removal, (2) the degree to which bioenergy displaces fossil fuel use, and (3) the proportion of biomass diverted to energy feedstocks versus wood products.

Funder

Northeastern States Research Cooperative

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3