A hybrid machine learning algorithm for studying magnetized nanofluid flow containing gyrotactic microorganisms via a vertically inclined stretching surface

Author:

Chandra Priyanka1ORCID,Das Raja1ORCID

Affiliation:

1. Department of Mathematics, School of Advanced Sciences Vellore Institute of Technology Vellore Tamil Nadu India

Abstract

AbstractThe novelty of the present work is to acquire continuous functions as solutions rather than the discrete ones that traditional numerical methods generally produce and to minimize simulation times and higher computation costs that are the fundamental barriers to employing any numerical method. In this study, a novel hybrid finite element‐based machine learning algorithm utilizing the Levenberg–Marquardt scheme with backpropagation in a neural network (LMBNN) is presented to analyze the nanofluid flow in the presence of magnetohydrodynamics and gyrotactic microorganisms through a vertically inclined stretching surface in a porous medium. Finite Element Method is used to generate the minimum reference dataset for LMBNN by varying six flow parameters in the form of six scenarios. Surface plots are utilized to understand how these scenarios affect velocity, temperature, concentration of nanoparticles, and density of motile microorganisms. Regression analysis, error histogram analysis, and fitness curves based on mean square error all support the LMBNN's effectiveness and dependability. Results reveal that temperature increases with the rise in Brownian motion and thermophoresis parameter, whereas the reverse trend has been noticed for Prandtl number. The motile microorganism density number decreases with the rise in Prandtl numbers but improves with the porosity parameter.

Publisher

Wiley

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Modeling and Simulation,Biomedical Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3