Multiscale Monte Carlo simulations of gold nanoparticle dose‐enhanced radiotherapy I: Cellular dose enhancement in microscopic models

Author:

Martinov Martin P.1,Fletcher Elizabeth M.1,Thomson Rowan M.1

Affiliation:

1. Carleton Laboratory for Radiotherapy Physics Department of Physics Carleton University Ottawa Canada

Abstract

AbstractBackgroundThe introduction of Gold NanoParticles (GNPs) in radiotherapy treatments necessitates considerations such as GNP size, location, and quantity, as well as patient geometry and beam quality. Physics considerations span length scales across many orders of magnitude (nanometer‐to‐centimeter), presenting challenges that often limit the scope of dosimetric studies to either micro‐ or macroscopic scales.PurposeTo investigate GNP dose‐enhanced radiation Therapy (GNPT) through Monte Carlo (MC) simulations that bridge micro‐to‐macroscopic scales. The work is presented in two parts, with Part I (this work) investigating accurate and efficient MC modeling at the single cell level to calculate nucleus and cytoplasm Dose Enhancement Factors (n,cDEFs), considering a broad parameter space including GNP concentration, GNP intracellular distribution, cell size, and incident photon energy. Part II then evaluates cell dose enhancement factors across macroscopic (tumor) length scales.MethodsDifferent methods of modeling gold within cells are compared, from a contiguous volume of either pure gold or gold‐tissue mixture to discrete GNPs in a hexagonal close‐packed lattice. MC simulations with EGSnrc are performed to calculate n,cDEF for a cell with radius  µm and nucleus  µm considering 10 to 370 keV incident photons, gold concentrations from 4 to 24 mgAu/gtissue, and three different GNP configurations within the cell: GNPs distributed around the surface of the nucleus (perinuclear) or GNPs packed into one (or four) endosome(s). Select simulations are extended to cells with different cell (and nucleus) sizes: 5 µm (2, 3, and 4 µm), 7.35 µm (4 and 6 µm), and 10 µm (7, 8, and 9 µm).Resultsn,cDEFs are sensitive to the method of modeling gold in the cell, with differences of up to 17% observed; the hexagonal lattice of GNPs is chosen (as the most realistic model) for all subsequent simulations. Across cell/nucleus radii, source energies, and gold concentrations, both nDEF and cDEF are highest for GNPs in the perinuclear configuration, compared with GNPs in one (or four) endosome(s). Across all simulations of the (rcell, rnuc) = (7.35, 5) µm cell, nDEFs and cDEFs range from unity to 6.83 and 3.87, respectively. Including different cell sizes, nDEFs and cDEFs as high as 21.5 and 5.5, respectively, are observed. Both nDEF and cDEF are maximized at photon energies above the K‐ or L‐edges of gold by 10 to 20 keV.ConclusionsConsidering 5000 unique simulation scenarios, this work comprehensively investigates many physics trends on DEFs at the cellular level, including demonstrating that cellular DEFs are sensitive to gold modeling approach, intracellular GNP configuration, cell/nucleus size, gold concentration, and incident source energy. These data should prove especially useful in research as well as treatment planning, allowing one to optimize or estimate DEF using not only GNP uptake, but also account for average tumor cell size, incident photon energy, and intracellular configuration of GNPs. Part II will expand the investigation, taking the Part I cell model and applying it in cm‐scale phantoms.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3