Introducing machine‐learning‐based data fusion methods for analyzing multimodal data: An application of measuring trustworthiness of microenterprises

Author:

Luo Xueming1,Jia Nan2ORCID,Ouyang Erya1,Fang Zheng3

Affiliation:

1. Temple University Philadelphia Pennsylvania USA

2. University of Southern California Los Angeles California USA

3. Sichuan University Chengdu Sichuan China

Abstract

AbstractResearch SummaryMultimodal data, comprising interdependent unstructured text, image, and audio data that collectively characterize the same source, with video being a prominent example, offer a wealth of information for strategy researchers. We emphasize the theoretical importance of capturing the interdependencies between different modalities when evaluating multimodal data. To automate the analysis of video data, we introduce advanced deep machine learning and data fusion methods that comprehensively account for all intra‐ and inter‐modality interdependencies. Through an empirical demonstration focused on measuring the trustworthiness of grassroots sellers in live streaming commerce on Tik Tok, we highlight the crucial role of interpersonal interactions in the business success of microenterprises. We provide access to our data and algorithms to facilitate data fusion in strategy research that relies on multimodal data.Managerial SummaryOur study highlights the vital role of both verbal and nonverbal communication in attaining strategic objectives. Through the analysis of multimodal data—incorporating text, images, and audio—we demonstrate the essential nature of interpersonal interactions in bolstering trustworthiness, thus facilitating the success of microenterprises. Leveraging advanced machine learning techniques, such as data fusion for multimodal data and explainable artificial intelligence, we notably enhance predictive accuracy and theoretical interpretability in assessing trustworthiness. By bridging strategic research with cutting‐edge computational techniques, we provide practitioners with actionable strategies for enhancing communication effectiveness and fostering trust‐based relationships. Access our data and code for further exploration.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference98 articles.

1. Convolutional Neural Networks for Speech Recognition

2. Cognitive Heat

3. Abidin C. &Ots M.(2015).The influencer's dilemma: The shaping of new brand professions between credibility and commerce. In Proceedings of the AEJMC 2015 Annual Conference San Francisco CA August 6‐9.

4. Entrepreneurial Opportunities and Poverty Alleviation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3