A signal‐switchable fluorescent probe for detection of HPO42− based on 5,10,15,20‐(4‐sulphonatophenyl)porphyrin (TPPS4)

Author:

Mu Wencheng1,Li Jing2,Wang Siying3,Ma Tianfeng1,Shi Lin1,Xu Xiaohua1,Lu Yongchang1,Wang Huan1ORCID

Affiliation:

1. Phytochemistry Key Laboratory of Tibetan Plateau of Qinghai Province; College of Pharmacy Qinghai Nationalities University Xining China

2. The Innovative Fine Chemical Co., Ltd. Yixing China

3. 96602 Military Hospital of Chinese People's Liberation Army Kunming China

Abstract

AbstractIn this study, 5,10,15,20‐(4‐sulphonatophenyl)porphyrin (TPPS4) was selected as a fluorescent probe due to its excellent characteristics including high quantum yield, good water solubility, and exceptional biocompatibility. With an excitation wavelength set at 515 nm, the optimal fluorescence emission wavelength for TPPS4 was measured at 642 nm. At this moment, the fluorescence signal of TPPS4 pink solution was in the ‘ON’ state. The fluorescence intensity of TPPS4 was quenched when ascorbic acid (AA) was introduced, which was due to the electron transfer quenching effect between AA and TPPS4. The colour of the corresponding solution changed from pink to green, and the fluorescence signal was in the ‘OFF’ state. When HPO42− was further introduced into the TPPS4–AA system, the quenched fluorescence intensity of TPPS4 was recovered due to the unique interaction between HPO42− and AA. At this time, the colour of the corresponding solution changed from green to red, and the fluorescence signal was in the ‘ON’ state. Therefore, an ‘ON–OFF–ON’ signal‐switchable fluorescent probe was constructed based on TPPS4 to detect HPO42−. The results showed that the linear range of HPO42− was 4.0 × 10−9 to 1.7 × 10−6 M, and the detection limit was 1.3 × 10−9 M (S/N = 3). The sensing system exhibited high accuracy and sensitivity, and it could be used successfully to detect HPO42− in real samples.

Publisher

Wiley

Subject

Chemistry (miscellaneous),Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3