Sample size optimization for clinical trials using graphical approaches for multiplicity adjustment

Author:

Zhang Fengqing1ORCID,Gou Jiangtao2ORCID

Affiliation:

1. Department of Psychological and Brain Sciences Drexel University Philadelphia Pennsylvania

2. Department of Mathematics and Statistics Villanova University Villanova Pennsylvania

Abstract

Graphical approach provides a useful framework for multiplicity adjustment in clinical trials with multiple endpoints. When designing a graphical approach, initial weight and transition probability for the endpoints are often assigned based on clinical importance. For example, practitioners may prefer putting more weights on some primary endpoints. The clinical preference can be formulated as a constrain in the sample size optimization problem. However, there has been a lack of theoretical guidance on how to specify initial weight and transition probability in a graphical approach to meet the clinical preference but at the same time to minimize the sample size needed for a power requirement. To fill this gap, we propose statistical methods to optimize sample size over initial weight and transition probability in a graphical approach under a common setting, which is to use marginal power for each endpoint in a trial design. Importantly, we prove that some of the commonly used graphical approaches such as putting all initial weights on one endpoint are suboptimal. Our methods are flexible, which can be used for both single‐arm trials and randomized controlled trials with either continuous or binary or mixed types of endpoints. Additionally, we prove the existence of optimal solution where all marginal powers are placed exactly at the prespecified values, assuming continuity. Two hypothetical clinical trial designs are presented to illustrate the application of our methods under different scenarios. Results are first presented for a design with two endpoints and are further generalized to three or more endpoints. Our findings are helpful to guide the design of a graphical approach and the sample size calculation in clinical trials.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3