Flexible bismaleimide resins based on bio‐based diamine: Synthesis and properties

Author:

Guo Rongye1,Huang Zheng1,Wang Ruibin1,Xu Lingtian1,Wan Liqiang1ORCID,Huang Farong1

Affiliation:

1. Key Laboratory for Specially Functional Materials and Related Technology (Ministry of Education), School of Materials Science and Engineering East China University of Science and Technology Shanghai China

Abstract

AbstractThe low toughness and high softening temperature of bismaleimide (BMI) resin limit its application in the field of electronic packaging. Herein, a series of flexible BMI resins with maleic anhydride terminated were synthesized via the imide reaction between dianhydrides and bio‐based 8,8′‐(4‐hexyl‐6‐octylcyclohexane‐1,3‐diyl)bis(octane‐1‐amine) (HOBOA). The degree of polymerization of these BMI resins was controlled to 1, 3, and 5 by adjusting the molar ratio of dianhydrides to HOBOA. These BMI resins show a low softening temperature below 100°C. These BMI resins were cured by the thermal procedure as follows: 145°C/2 h, 185°C/2 h, 225°C/2 h, and 275°C/2 h. The thermal decomposition temperature of cured resins is above 395°C. The tensile testing results demonstrated that cured resins exhibit a high elongation at break of around 60%. The dielectric constant of the cured resins is between 2.72 and 3.09 at room temperature. The water absorption rate of cured resins is less than 0.7% after being soaked in water for 30 days. After the cured resins were soaked separately in acid and alkali, the tensile strength retention rate reaches more than 90%. Additionally, the lap shear strength of cured resins coated on 7075 aluminum alloy exceeds 7.0 MPa.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3