Maximal cocliques and the chromatic number of the Kneser graph on chambers of PG(3,q) $(3,q)$

Author:

Heering Philipp1ORCID,Metsch Klaus1ORCID

Affiliation:

1. Mathematisches Institut Justus‐Liebig‐Universitüt Gießen Germany

Abstract

AbstractLet be the graph whose vertices are the chambers of the finite projective 3‐space , with two vertices being adjacent if and only if the corresponding chambers are in general position. We show that a maximal independent set of vertices of contains , or , or at most elements. For the structure of the largest maximal independent sets is described. For the structure of the maximal independent sets of the three largest cardinalities is described. Using the cardinality of the second largest maximal independent sets, we show that the chromatic number of is .

Publisher

Wiley

Reference10 articles.

1. J.Bamberg A.Betten P.Cara J.De Beule M.Lavrauw M.Neunhoeffer andM.Horn FinInG finite incidence geometry Version 1.5.6. Refereed GAP package.https://gap-packages.github.io/FinInG July2023.

2. Maximal cocliques in the Kneser graph on point–plane flags inPG(4,q)

3. Cocliques in the Kneser graph on line-plane flags in PG(4;q)

4. Cocliques in the Kneser graph on the point-hyperplane flags of a projective space

5. An algebraic approach to Erdős-Ko-Rado sets of flags in spherical buildings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3