Affiliation:
1. Department of Electrical Engineering, Faculty of Engineering & Technology Jamia Millia Islamia New Delhi India
Abstract
AbstractEnvironmental issues and the depletion of fossil fuel resources cause increased demand for electric vehicles. An electric vehicle consists of two main components: a propulsion system and a battery charger. The design of an efficient, fast and economical charger is key to its success. Therefore, this paper presents a novel design of a dual active bridge‐based bidirectional converter with logical control for an electric vehicle application. The logical control of the converter enables the power flow between the grid and the electric vehicle and vice versa. The power flow is based on the single‐phase shift method. The converter selects the mode of operation based on the battery's state of charge and the user command using a binary switch. The power requirement influences the design of the circuit's parameters of the electric vehicle battery. A 50 V, 100 Ah, and 5 kW Li‐ion battery and AC power source of 230 V, 50 Hz are used in the simulation work. The circuit performance is verified in the SIMULINK/MATLAB environment. The analysis of the converter gives better control for various state‐of‐charge levels of electric vehicle batteries.
Subject
Renewable Energy, Sustainability and the Environment,Energy Engineering and Power Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献