Online feature selection for hierarchical classification learning based on improved ReliefF

Author:

Wang Chenxi123,Ren Mengli12ORCID,E Chen12,Guo Lei3ORCID,Yu Xiehua24,Lin Yaojin12,Li Shaozi5

Affiliation:

1. School of Computer Science Minnan Normal University Zhangzhou China

2. Lab of Data Science and Intelligence Application Minnan Normal University Zhangzhou China

3. Fujian Key Laboratory of Big Date Application and Intellectualization for Tea Industry Wuyi University Wuyishan China

4. School of Computer and Information MinNan Science and Technology University Quanzhou China

5. Department of Artificial Intelligence Xiamen University Xiamen China

Abstract

AbstractIn hierarchical classification learning, the feature space of data has high dimensionality and is unknown with emergent features. To solve the above problems, we propose an online hierarchical feature selection algorithm based on adaptive ReliefF. Firstly, ReliefF is adaptively improved via using the density information of instances around the target sample, making it unnecessary to prespecify parameters. Secondly, the hierarchical relationship between classes is used, and a new method for calculating the feature weight of hierarchical data is defined. Then, an online correlation analysis method based on feature interaction is designed. Finally, the adaptive ReliefF algorithm is improved based on feature redundancy, and the feature weight is scaled by the correlation between features in order to achieve the dynamic updating of feature redundancy. A large number of experiments verify the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Computer Science Applications,Theoretical Computer Science,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3