Superelastic wood‐based nanogenerators magnifying the piezoelectric effect for sustainable energy conversion

Author:

Wu Tong123ORCID,Lu Yun3,Tao Xinglin2,Chen Pan4,Zhang Yongyue3,Ren Bohua3,Xie Feifan3,Yu Xia3,Zhou Xinyi3,Yang Dongjiang1,Sun Jin1,Chen Xiangyu2

Affiliation:

1. State Key Laboratory of Bio‐fibers and Eco‐textiles, School of Environmental Science and Engineering, Institute of Marine Biobased Materials Qingdao University Qingdao China

2. Beijing Key Laboratory of Micro‐Nano Energy and Sensor CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing China

3. Research Institute of Wood Industry Chinese Academy of Forestry Beijing China

4. Beijing Engineering Research Centre of Cellulose and Its Derivatives School of Materials Science and Engineering Beijing Institute of Technology Beijing China

Abstract

AbstractIn the quest for sustainable energy materials, wood is discovered to be a potential piezoelectric material. However, the rigidity, poor stability, and low piezoelectric properties of wood impede its development. Here, we obtained a superelastic roasted wood nanogenerator (RW‐NG) by unraveling ray tissues through a sustainable roasting strategy. The increased compressibility of roasted wood intensifies the deformation of cellulose microfibrils, significantly enhancing the piezoelectric effect in wood. Roasted wood (15 × 15 × 15 mm3, longitudinal × radial × tangential) can generate a voltage and current outputs of 1.4 V and 14.5 nA, respectively, which are more than 70 times that of natural wood. The wood sample can recover 90% of its shape after 5000 compressions at 65% strain, exhibiting excellent elasticity and stability. Importantly, roasted wood does not add any toxic substances and can be safely applied on the human skin as a self‐powered sensor for detecting body movements. Moreover, it can also be assembled into self‐powered wooden floors for energy harvesting. These indicate that roasted wood has great potential for sustainable sensing and energy conversion.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

State Key Laboratory of Bio-Fibers and Eco-Textiles

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3